AVID

Guidelines for Client Applications on Avid Unity ISIS

September 2009

Abstract

This document describes the best practices a developer should employ for applications that will run on an
Avid Unity ISIS (ISIS) shared storage system. These general guidelines enable applications to extract high
performance from ISIS in most usage scenarios.

Unless specifically noted to the contrary, the guidelines described apply to both 1.x and 2.0.x versions of
ISIS. Unless noted to the contrary these guidelines apply to both Windows-based and MacOS-based
clients.

Introduction

Avid’s shared storage systems are designed to support collaborative, real-time media workflows, in which
multiple users share common material. ISIS is a unique distributed, parallel file system with advanced file
management strategies that deliver on the promise of scalable and predictable performance for
workgroups that can scale into the hundreds of users.

Avid Shared Storage products store media in units called “chunks”. A chunk is the virtual block size
supported by the storage and is the smallest allocation unit. Current versions of ISIS support 256K and
512K chunks. Avid Unity MediaNetwork 5.X storage provides a 1MB chunk.

It is important to remember that ISIS is a high bandwidth and high latency storage system. For an ISIS
system there are a number of strategies you should deploy that maximize performance while factoring in
the inherent differences between a shared storage system and local storage system:

e Use I/O sizes that balance efficiency and fairness to other clients

e Request data in chunks optimally relative to the physical disk layout, eliminating inefficient read-
modify-write I/O’s and avoiding crossing physical disk boundaries

e Have client applications use non-blocking 1/O calls and queue adequate numbers of these to
ensure maximum efficiency of the client/storage connection

e Use a “just-in-time” approach to opening and closing files. It is not optimal to open all of the files
required for a multimedia project when the project is loaded. Deferring opens to closer to when
data is required (read or write) helps balance the load on the System Director.

By deploying these strategies applications will benefit in a number of ways:
e Faster start when starting media playback

e Higher resolutions and more streams of video per client
e More clients per ISIS system

Avid Technology Inc., Confidential Information

Guidelines for Client Applications on Avid Unity ISIS Page 2 of 2

Guidelines for ISIS Client applications

e Use chunk aligned, chunk sized asynchronous reads for high read performance. In general, the read
bandwidth increases with the number of asynchronous reads. If asynchronous reads are not feasible,
then one should use large reads — of the order of 16 to 32 MB." These large reads should be multiples
of the chunk size and they should be aligned to a chunk. Alignment to a chunk can be achieved by
ensuring that the offset of an operation is a multiple of the chunk size. An application should only
read what it needs. There is no benefit in reading the trailing parts of a chunk if that data is never
used or modified. In ISIS 2.0.x the default chunk size is 256 KB for 11000 and 1500 storage blades and
512 KB for 12000 blades.

e Use large writes to achieve high write bandwidth. These writes should be multiples of the chunk size
and they should be aligned at a chunk boundary.

e Don’trely on file system caching to cover inefficient read/write operations. A significant issue is
when client applications consider the file system cache as an extension of application memory. While
this might work on local storage, it does NOT work on shared storage. Since an application cannot be
guaranteed that data will be the same next time it is read (remember it’s shared) caching time on the
client is very limited by design. In most cases, if you read the same data twice through file system
calls, the data will likely have to be reread from the disk drive(s) and flow through the storage system
twice, and the application will consume more bandwidth from the storage system than necessary.
Applications should avoid reading data more than once (data should be cached externally from the
file system if it will be re-read soon). One example of inefficient operations is re-reading frames in a
slow motion effect rather than caching externally for redisplay.

e Use Direct I/O operations. Using buffered 1/0O operations decreases throughput considerably by
adding memory copies in cache where they are not required.

e When specifying access and share access during file open, specify only what you need. In particular,
don't open files for shared write access gratuitously. This indicates to ISIS that the application
expects multiple applications to be writing to the file at the same time and may cause ISIS to use
aggressive internal flushing to ensure coherency. This can cause performance degradation. Similarly,
open files requesting write access only when the application truly intends to write to the file.

Summary

ISIS is a very powerful real-time storage system enabling hundreds of clients to share common media
frame accurately. Avid’s entire suite of client applications are designed to operate optimally with ISIS,
ensuring the full potential of ISIS is attainable by Avid’s users.

Third party application developers can also optimize applications for maximum performance of the
application and the ISIS system. To do this, there are a handful of key guidelines that should be followed:

Follow alignment, 1/0 size and asynchrony guidelines described above.

e Don’t rely on file system caching to cover inefficient read/write operations.

Use Direct I/O operations.

When specifying access and share access during file open, specify only what you need.

! In some cases the operating system may break up an application’s I/Os.

Avid Confidential Information

