

Using C/C++ and gSOAP with Avid Interplay WS
Revision 1.1 – April 7, 2008

Overview 2
Distribution and Licensing of gSOAP 2
General Conventions Used in this Document 2
Locating the WSDL and XSD files 2

Creating a gSOAP Client with Microsoft Visual Studio .NET Step-by-Step 3
Create a New Win32 Console Project 3
Compile the WSDL File for the Interplay WS Assets Service 5
Alternate Code Generation with gSOAP 7
Write Code to Use the Interplay WS Assets Service 8

Advanced Topics 10
Changing the Endpoint URL 10
Enabling Secure Transmission over HTTPS 11
Enabling MTOM Support 15

Overview

The Interplay WS API provides SOAP web services for interacting with Avid Interplay. The first release
provides operations for exchanging and modifying metadata in the Avid Interplay Engine. This
document demonstrates how to create a C or C++ client for Interplay WS using Microsoft Visual Studio
.NET and the gSOAP web services development toolkit.

Distribution and Licensing of gSOAP

Although much of gSOAP is licensed under a lenient gSOAP Public License, some important parts are
licensed under either the GPL or Genivia commercial license. Please be aware of these restrictions
before developing a product using gSOAP. You can find more information at the gSOAP web site.

General Conventions Used in this Document

Server name and port
The server name and port of the Interplay WS services will be different for each site. For the purposes
of this documentation, we will be using the localhost server and port 80 (the default port). You should
modify your work to reflect the actual hostname and port of your Interplay WS installation.

For simplicity, this documentation will mainly use http. Instructions for using https can be found near
the end of this document. For security purposes, we recommend you use https in production
environments.

Workgroup name and server mapping
The Interplay WS application must be configured with workgroup name and server mappings. This can
be done via the Avid Interplay Framework Configuration client. For the purposes of this documentation,
we will assume that the workgroup name WGA is mapped to our Interplay Engine server.

Locating the WSDL and XSD files

Since Interplay WS is a SOAP web service, it uses a Web Services Description Language (WSDL) file
to describe its interface. This WSDL also references an XML Schema Document (XSD) to define the
XML types used in the messages. In development, your SOAP toolkit will use the WSDL file to
generate client code to access the service.

The WSDL for Interplay WS Assets can be found at:
http://iws-srv/services/Assets?wsdl
(Remember to change the server name and port to match your environment)

This WSDL will also reference the XSD, which can be found at:
http://iws-srv/services/Assets?xsd=assets.xsd

Using C/C++ and gSOAP with Avid Interplay WS 2

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Web_service
http://www.cs.fsu.edu/%7Eengelen/soap.html
http://www.cs.fsu.edu/%7Eengelen/license.html
http://www.cs.fsu.edu/%7Eengelen/gpl.txt
http://www.genivia.com/Products/gsoap/GeniviaGSoapLicense.pdf
http://www.cs.fsu.edu/%7Eengelen/soaplicense.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/xmlschema-0/
http://iws-srv/services/Assets?wsdl
http://iws-srv/services/Assets?wsdl

Creating a gSOAP Client with Microsoft Visual Studio .NET Step-by-Step

For this tutorial, we will create a simple C++ Console application that gets the children of the
Projects/Rainforest folder.

Create a New Win32 Console Project

1. Create a new project by choosing File -> New -> Project…

2. Choose a Visual C++ Win32 Console Application, and enter the name and location of the project.

Note: It is assumed that the project path is C:\dev\gsoap-test\InterplayWSDemo. If your
chosen project path is different, then be sure to make the appropriate changes when stepping
through this sample.

Using C/C++ and gSOAP with Avid Interplay WS 3

3. Once created, right-click on the project in the Solution Explorer and select Properties.

4. Add wsock32.lib to Configuration Properties -> Linker -> Command Line.

Using C/C++ and gSOAP with Avid Interplay WS 4

Compile the WSDL File for the Interplay WS Assets Service

1. Create a new directory called assets in the project’s path and copy the typemap.dat file from
C:\<Path to gSOAP> into it.

Note: It is assumed that your path to gSOAP is C:\gSOAP. If your gSOAP installation is located
elsewhere, then be sure to make the appropriate changes when stepping through this sample.

2. Open the new copy of the typemap.dat file and setup the namespaces that will be used by adding

the following lines to the file:

assets = “http://avid.com/interplay/ws/assets”
types = “http://avid.com/interplay/ws/assets/types”

3. Open a new command prompt and navigate to your assets directory (C:\dev\gsoap-

test\InterplayWSDemo\assets).

4. Run gSOAP’s WSDL parser and provide the name of the header file that is to be generated along

with the URL to the WSDL file (see Locating the WSDL and XSD File above):

wsdl2h –o Assets.h http://localhost/services/Assets?wsdl

Using C/C++ and gSOAP with Avid Interplay WS 5

5. Run gSOAP’s compiler and provide the header file that was just generated:

soapcpp2 –C –IC:\gSOAP\import Assets.h

Note: The –I argument is used to import stlvector.h, which is used for STL support within
gSOAP. The –C (uppercase) argument is used to generate client code only. This sample is
generating C++ code with STL support. In order to generate code in either pure C or C++ without
STL support, see Alternate Code Generation with gSOAP.

6. Copy the stdsoap2.h and stdsoap2.cpp files from C:\gSOAP into the assets directory

(C:\dev\gsoap-test\InterplayWSDemo\assets).

Using C/C++ and gSOAP with Avid Interplay WS 6

Alternate Code Generation with gSOAP

gSOAP has the ability to generate code in C, C++ without STL, and C++ with STL. We’ve already
shown you how to perform the latter, so we’ll demonstrate how to generate code for the other two
scenarios. If you just want to write code in C++ with STL support, skip to the next section.

C:

wsdl2h –c –o Assets.h http://localhost/services/Assets?wsdl
soapcpp2 –c –C Assets.h

C++ without STL:

wsdl2h –s –o Assets.h http://localhost/services/Assets?wsdl
soapcpp2 -C Assets.h

Using C/C++ and gSOAP with Avid Interplay WS 7

Write Code to Use the Interplay WS Assets Service

This sample code is written in C++ with STL, but is still a good reference if you have chosen to use C or
C++ without STL.

1. Include the proxy class header file and nsmap file generated by gSOAP.

#include “assets/soapAssetsPortBindingProxy.h”
#include “assets/AssetsPortBinding.nsmap”

2. Create a couple of useful type definitions used for iterating through the results of the GetChildren

response.

typedef std::vector<types__AssetDescriptionType*>::iterator AssetDescriptionTypeItr;
typedef std::vector<types__AttributeType*>::iterator AttributeTypeItr;

3. Get an implementation of the Assets port. For this example, we are writing this and all other code

in the main function of our program.

4. Set the UserCredentials to pass in the operation.

5. Allocate space for the Header and add the UserCredentials to it.

6. Create and populate the parameters for the GetChildren operation. See the Interplay WS

Reference Guide for more information on Interplay URIs.

port.soap->header = (struct SOAP_ENV__Header*)soap_malloc(port.soap,
 sizeof(struct SOAP_ENV__Header));

port.soap->header->types__UserCredentials = &creds;

types__UserCredentialsType creds;
creds.Username = “jsmith”;
creds.Password =”secret”;

types__GetChildrenType body;
body.InterplayURI = “interplay://WGA/Projects/Rainforest”;
body.setIncludeFolders = true;
body.setIncludeFiles = true;
body.setIncludeMOBs = true;

AssetsPortBinding port;

7. Execute the GetChildren operation via the Assets port. This returns an error code, which should be

processed in your own application.

Using C/C++ and gSOAP with Avid Interplay WS 8

types__GetChildrenResponseType response;
port.__assets__GetChildren(&body, &response);

8. Handle the results. For this example, we’ll just output the Interplay URI and the returned attributes.

See the Interplay WS Reference Guide for more info on attributes.

std::vector<types__AssetDescriptionType*> children = response.Results->AssetDescription;

for (AssetDescriptionTypeItr child = children.begin(); child != children.end(); child++)
{
 std::cout << (*child)->InterplayURI << std::endl;

 std::vector<types__AttributeType*> attributes = (*child)->Attributes->Attribute;

 for (AttributeTypeItr attr = attributes.begin(); attr != attributes.end(); attr++)

{
 std::cout << (*attr)->Group << “.” << (*attr)->Name
 << “ = “ << (*attr)->__item << std::endl;

}

std::cout << std::endl;

}

9. Compile and run the program. You should see the results in the console window.

Using C/C++ and gSOAP with Avid Interplay WS 9

Advanced Topics

Changing the Endpoint URL

In some cases, you may want to change the endpoint that your client code uses. By default, the code
will use whichever endpoint URL was specified in the WSDL to create the service. To make your client
communicate with an Interplay WS service on a different host, you need to change the endpoint URL.

Changing the endpoint URL in gSOAP is a simple task.

C++:

AssetsPortBinding port;
port.endpoint = “http://new-endpoint-url/”;

C:

/* In C you pass the new endpoint URL directly to SOAP function calls */
char* endpoint = “http://new-endpoint-url/”;
soap_call__assets__GetChildrenResponse(soap, endpoint, body, response);

Another common reason to change the endpoint is for debugging purposes. You can use a tool such
as TCPMon to create a relay to the Interplay WS host. You would then configure your client code to
send requests to TCPMon on your local machine. TCPMon could then intercept the sent and received
messages so you can view their contents. If TCPMon is listening on port 81 on your local machine,
your code should look like this:

C++:

AssetsPortBinding port;
port.endpoint = “http://localhost:81/services/Assets”;

C:

char* endpoint = “http://localhost:81/services/Assets”;
soap_call__assets__GetChildrenResponse(soap, endpoint, body, response);

Using C/C++ and gSOAP with Avid Interplay WS 10

http://ws.apache.org/commons/tcpmon/

 Enabling Secure Transmission over HTTPS

The Interplay WS service also allows for encrypted transmissions via HTTPS. In order to make use of
this feature you must first download and install the OpenSSL Toolkit. Once you have done so you can
start transmitting over HTTPS with gSOAP by following the steps below.

1. Add the OpenSSL include and lib directories to your project. Choose Tools -> Options.

2. Select Projects -> VC++ Directories from the list on the left.

Using C/C++ and gSOAP with Avid Interplay WS 11

http://www.openssl.org/

3. Select Include files from the list of directories on the right and add the OpenSSL Toolkit’s include

directory.

4. Select Library files from the list of directories on the right and add the OpenSSL Toolkit’s lib\VC
directory.

Using C/C++ and gSOAP with Avid Interplay WS 12

5. Right-click the project in the Solution Explorer and select Properties.

6. Add the preprocessor definition WITH_OPENSSL to Configuration Properties -> C/C++ ->

Preprocessor.

Using C/C++ and gSOAP with Avid Interplay WS 13

7. Add libeay32.lib and ssleay32.lib to Configuration Properties -> Linker -> Command Line.

8. The following piece of code shows how to setup support for SSL in gSOAP and change the port so
that it uses HTTPS instead of HTTP. The Interplay WS uses a self-signed certificate.

if (soap_ssl_client_context(port.soap,
 SOAP_SSL_NO_AUTHENTICATION,
 NULL, // keyfile
 NULL, // password to read keyfile
 NULL, // cacert file to store trusted certificates
 NULL, // capath to directory with trusted certficates
 NULL, // file containing random data for seed
))
{
 soap_print_fault(port.soap, stderr);
 return 1;
}

port.endpoint = “https://iws-srv/services/Assets”;

Using C/C++ and gSOAP with Avid Interplay WS 14

Enabling MTOM Support

MTOM is the recommended best practice for efficiently transporting binary files via SOAP. For samples
using MTOM refer to the “mtom” and “mtom-streaming” samples that ship with gSOAP. These can be
found in “samples” folder in the root directory of your gSOAP installation.

	Overview
	Distribution and Licensing of gSOAP
	General Conventions Used in this Document
	Locating the WSDL and XSD files

	Creating a gSOAP Client with Microsoft Visual Studio .NET Step-by-Step
	Create a New Win32 Console Project
	Compile the WSDL File for the Interplay WS Assets Service
	Alternate Code Generation with gSOAP
	Write Code to Use the Interplay WS Assets Service

	Advanced Topics
	Changing the Endpoint URL
	 Enabling Secure Transmission over HTTPS
	Enabling MTOM Support

