

Using Microsoft Visual Studio .NET with Avid Interplay WS
Revision 1.3 – December 5, 2007

Overview 2
Microsoft Visual Studio .NET Versions 2
General Conventions Used in this Document 2
Locating the WSDL and XSD files 2

Creating a Visual Studio .NET Client Step-by-Step 3
Create a New Console Project 3
Add a Web Reference to the Interplay WS Assets Service 4
Write Code to Use the Interplay WS Web Reference 5

Advanced Topics 6
Enabling MTOM Support (Visual Studio 2005) 6
Changing the Endpoint URL 8
Enabling Secure Transmission over HTTPS 9
Changing the Timeout Length for SOAP Requests 11
Logging Outgoing and Incoming Message Traffic 12

Overview

The Interplay WS API provides SOAP web services for interacting with Avid Interplay. The first release
provides operations for exchanging and modifying metadata in the Avid Interplay Engine. This
document demonstrates how to create a C# client for Interplay WS using Microsoft Visual Studio .NET.

The Interplay WS distribution also comes with screencast demonstrating how to use Visual Studio with
Interplay WS. You may want to watch the screencast for a more visual and dynamic demonstration.

Microsoft Visual Studio .NET Versions

You can create a client for Interplay WS using any version of Visual Studio that supports the .NET
framework. This document was written using Visual Studio 2005 with .NET 2.0, but we have noted
where differences may occur for Visual Studio .NET 2003.

General Conventions Used in this Document

Server name and port
The server name and port of the Interplay WS services will be different for each site. For the purposes
of this documentation, we will be using the localhost server and port 80 (the default port). You should
modify your work to reflect the actual hostname and port of your Interplay WS installation.

For simplicity, this documentation will mainly use http. Instructions for using https can be found near
the end of this document. For security purposes, we recommend you use https in production
environments.

Workgroup name and server mapping
The Interplay WS application must be configured with workgroup name and server mappings. This can
be done via the Avid Interplay Framework Configuration client. For the purposes of this documentation,
we will assume that the workgroup name WGA is mapped to our Interplay Engine server.

Locating the WSDL and XSD files

Since Interplay WS is a SOAP web service, it uses a Web Services Description Language (WSDL) file
to describe its interface. This WSDL also references an XML Schema Document (XSD) to define the
XML types used in the messages. In development, your SOAP toolkit will use the WSDL file to
generate client code to access the service.

The WSDL for Interplay WS Assets can be found at:
http://iws-srv/services/Assets?wsdl
(Remember to change the server name and port to match your environment)

This WSDL will also reference the XSD, which can be found at:
http://iws-srv/services/Assets?xsd=assets.xsd

Using Microsoft Visual Studio .NET with Avid Interplay WS 2

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Web_service
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/xmlschema-0/
http://iws-srv/services/Assets?wsdl
http://iws-srv/services/Assets?wsdl

Creating a Visual Studio .NET Client Step-by-Step

For this tutorial, we will create a simple C# Console application that gets the children of the
Projects/Rainforest folder.

Create a New Console Project

1. Create a new project by choosing File -> New -> Project…

2. Choose a Visual C# Console Application, and enter the name and location of the project.

Using Microsoft Visual Studio .NET with Avid Interplay WS 3

Add a Web Reference to the Interplay WS Assets Service

1. Right-click on References in the Solution Explorer and choose Add Web Reference…

2. Type in the URL to the WSDL file (see Locating the WSDL and XSD File above) and click Go.

3. Change the Web reference name to the name you wish to use for referencing the Interplay WS

Assets service and then click Add Reference. For these examples, we will use InterplayWS.

Using Microsoft Visual Studio .NET with Avid Interplay WS 4

Write Code to Use the Interplay WS Web Reference

1. Add a using statement to the C# file so we use the new web reference namespace. Note that this

will differ depending on your project name and the name you gave the web reference.

 using InterplayWSDemo.InterplayWS;

2. Get an implementation of the Assets port. For this example, we are writing this and all other code

in the Main method of our program.

Assets port = new Assets();

3. Set the UserCredentials used by the Assets port.

port.UserCredentials = new UserCredentialsType();
port.UserCredentials.Username = "jsmith";
port.UserCredentials.Password = "secret";

4. Create and populate the parameters for the GetChildren operation. See the Interplay WS

Reference Guide for more information on Interplay URIs.

GetChildrenType param = new GetChildrenType();
param.InterplayURI = "interplay://WGA/Projects/Rainforest";
param.IncludeFiles = true; // Note that bools default to false if not specified
param.IncludeFolders = true;
param.IncludeMOBs = true;

5. Execute the GetChildren operation via the Assets port.

GetChildrenResponseType response = port.GetChildren(param);

6. Handle the results. For this example, we’ll just output the Interplay URI and the returned attributes.

See the Interplay WS Reference Guide for more info on attributes.

foreach (AssetDescriptionType ad in response.Results) {
 Console.WriteLine(ad.InterplayURI);
 foreach (AttributeType att in ad.Attributes) {
 Console.WriteLine(att.Group + "." + att.Name + " = " + att.Value);
 }
 Console.WriteLine();
}

7. Save and run the program. You should see the results in a console window.

Note: If an optional parameter is mapped to a primitive, Visual Studio uses a special boolean to indicate
if the parameter is specified. For example, it generates MaxResults and MaxResultsSpecified properties
for SearchType. If MaxResultsSpecified is false, it will not include a MaxResults element in the request.

Using Microsoft Visual Studio .NET with Avid Interplay WS 5

Advanced Topics

Enabling MTOM Support (Visual Studio 2005)

MTOM is the recommended best practice for efficiently transporting binary files via SOAP. Visual
Studio .NET 2003 does not support MTOM. Visual Studio 2005 supports MTOM via the Web Services
Enhancements 3.0 add-on. If you wish to use MTOM (highly recommended), then follow the
instructions below.

1. Download and install the Web Services Enhancements 3.0 add-on via the following URL:

http://msdn2.microsoft.com/en-us/webservices/Aa740663.aspx

2. Open your Interplay WS client project and right-click the project in Solutions Explorer and choose
WSE Settings 3.0…

3. In the resulting dialog, check Enable this project for Web Services Enhancements.

4. Select the Messaging tab and turn on Client Mode under MTOM Settings. Then click OK.

Using Microsoft Visual Studio .NET with Avid Interplay WS 6

http://msdn2.microsoft.com/en-us/webservices/Aa740663.aspx
http://msdn2.microsoft.com/en-us/webservices/Aa740663.aspx
http://msdn2.microsoft.com/en-us/webservices/Aa740663.aspx

5. Update the Web Reference by right-clicking it in Solution Explorer and choosing Update Web
Reference

6. In your custom code, you must now specifically use the WSE enabled AssetsWse port.

AssetsWse port = new AssetsWse();

7. If you wish to disable MTOM temporarily, you can do so via code.

port.RequireMtom = false; // Do this to disable MTOM

Using Microsoft Visual Studio .NET with Avid Interplay WS 7

Changing the Endpoint URL

In some cases, you may want to change the endpoint that your client code uses. By default, the code
will use whichever endpoint URL was specified in the WSDL to create the service. To make your client
communicate with an Interplay WS service on a different host, change the endpoint URL.

port.Url = "http://iws-srv2/services/Assets";

Another common reason to change the endpoint is for debugging purposes. You can use a tool such
as TCPMon to create a relay to the Interplay WS host. You would then configure your client code to
send requests to TCPMon on your local machine. TCPMon could then intercept the sent and received
messages so you can view their contents. If TCPMon is listening on port 81 on your local machine,
your code should look like this:

port.Url = "http://localhost:81/services/Assets";

Using Microsoft Visual Studio .NET with Avid Interplay WS 8

http://ws.apache.org/commons/tcpmon/

 Enabling Secure Transmission over HTTPS

The Interplay WS service also allows for encrypted transmissions via HTTPS. The Interplay WS server
uses a self-signed certificate, so Visual Studio .NET will not trust it by default. There are several ways
to override this to allow .NET to trust the self-signed certificate.

Trusting a Self-Signed Certificate with Visual Studio 2005

The easiest way to configure .NET 2.0 and .NET 3.0 to trust the Interplay WS HTTPS service is by
overriding the ServerCertificateValidationCallback.

The following steps show an example of how to do this in your Interplay WS client:

1. Add a delegate for the ServerCertificateValidationCallback before any calls to Interplay WS are

made.*

ServicePointManager.ServerCertificateValidationCallback += delegate(
 Object obj,
 System.Security.Cryptography.X509Certificates.X509Certificate certificate,
 System.Security.Cryptography.X509Certificates.X509Chain chain,
 System.Net.Security.SslPolicyErrors errors)
{
 // Do any certificate validation logic here.
 // This example checks to make sure that the Organizational Unit is “Interplay”
 return certificate.Subject.Contains("OU=Interplay");
};

2. Change your Assets port to use HTTPS instead of HTTP.

 port.Url = "https://iws-srv/services/Assets";

* System.Net.ServicePointManager.ServerCertificateValidationCallback is a system setting. Setting it
could affect other Certificate aware code in your program.

Using Microsoft Visual Studio .NET with Avid Interplay WS 9

http://msdn2.microsoft.com/en-us/library/system.net.servicepointmanager.servercertificatevalidationcallback.aspx

Trusting a Self-Signed Certificate with Visual Studio .NET 2003

The easiest way to configure .NET 1.0 to trust the Interplay WS HTTPS service is by setting up a
custom Certificate Policy.

The following steps show an example of how to do this in your Interplay WS client:

1. Create a custom InterplayWsTrustingCertificatePolicy.

public class InterplayWsTrustingCertificatePolicy : System.Net.ICertificatePolicy {
 public InterplayWsTrustingCertificatePolicy() { }

 public bool CheckValidationResult(
 System.Net.ServicePoint sp,
 System.Security.Cryptography.X509Certificates.X509Certificate certificate,
 System.Net.WebRequest request,
 int problem)
 {
 // Do any certificate validation logic here.
 // This example checks to make sure that the Organizational Unit is “Interplay”
 return certificate.GetName().IndexOf("OU=Interplay") != -1;
 }
}

2. Set the System.Net.ServicePointManager.CertificatePolicy to your custom certificate policy. This

should be done before any calls to Interplay WS are made and only needs to be called once.*

 System.Net.ServicePointManager.CertificatePolicy = new InterplayWsTrustingCertificatePolicy();

3. Change your Assets port to use HTTPS instead of HTTP.

 port.Url = "https://iws-srv/services/Assets";

* System.Net.ServicePointManager.CertificatePolicy is a system setting. Setting it could affect other
Certificate aware code in your program.

Using Microsoft Visual Studio .NET with Avid Interplay WS 10

http://msdn2.microsoft.com/en-us/library/system.net.servicepointmanager.certificatepolicy.aspx

Changing the Timeout Length for SOAP Requests

Some queries (particularly broad search queries) may take some time before they return with a
response. By default, Microsoft .NET clients will timeout after 100 seconds. You can configure your
client to timeout after a different length of time by setting the Timeout property on the generated Assets
port. Timeout values are measured in milliseconds.

port.Timeout = 5*60*1000; // Time out after 5 minutes (5 min * 60 sec * 1000 ms)

If a timeout does occur in your client, a System.Net.WebException will be thrown with a status of
System.Net.WebExceptionStatus.Timeout.

If you do not wish for timeouts to ever occur, you can also set your client to never timeout:

 port.Timeout = System.Threading.Timeout.Infinite; // Never time out

Using Microsoft Visual Studio .NET with Avid Interplay WS 11

http://msdn2.microsoft.com/en-us/library/system.web.services.protocols.webclientprotocol.timeout.aspx
http://msdn2.microsoft.com/en-us/library/system.net.webexception.aspx
http://msdn2.microsoft.com/en-us/library/system.net.webexceptionstatus.aspx

Logging Outgoing and Incoming Message Traffic

Visual Studio 2005 can log incoming and outgoing traffic via the Web Services Enhancements 3.0 add-
on. This is not available for Visual Studio .NET 2003 users, but they should be able to log messages
via a tool such as TCPMon, as discussed in the section Changing the Endpoint URL.

To log messages using Visual Studio 2005 Web Services Enhancements:

1. Download and install the Web Services Enhancements 3.0 add-on via the following URL:

http://msdn2.microsoft.com/en-us/webservices/Aa740663.aspx

2. Open your Interplay WS client project and right-click the project in Solutions Explorer and choose
WSE Settings 3.0…

3. In the resulting dialog, choose the Diagnostics tab, check Enable Message Trace, and configure

where the logs should be written, and click OK.

4. In your custom code, you must now specifically use the WSE enabled AssetsWse port.

AssetsWse port = new AssetsWse();

Using Microsoft Visual Studio .NET with Avid Interplay WS 12

http://msdn2.microsoft.com/en-us/webservices/Aa740663.aspx

	Overview
	Microsoft Visual Studio .NET Versions
	General Conventions Used in this Document
	Locating the WSDL and XSD files

	Creating a Visual Studio .NET Client Step-by-Step
	Create a New Console Project
	Add a Web Reference to the Interplay WS Assets Service
	Write Code to Use the Interplay WS Web Reference

	Advanced Topics
	Enabling MTOM Support (Visual Studio 2005)
	Changing the Endpoint URL
	 Enabling Secure Transmission over HTTPS
	Changing the Timeout Length for SOAP Requests
	Logging Outgoing and Incoming Message Traffic

