

Using Netbeans 5.5 and Sun Metro with Avid Interplay WS
Revision 1.3 – December 5, 2007

Overview 2
Sun Metro and Java SOAP Toolkits 2
General Conventions Used in this Document 2
Locating the WSDL and XSD files 2

Creating a Metro Client with NetBeans Step-by-Step 3
Create a New Java Application Project 3
Create a New Web Service Client for the Interplay WS Assets Service 4
Generating Starting Point Code for Calling an Operation 5
Write Code to Use the Interplay WS Assets Service 6

Advanced Topics 7
Enabling MTOM Support 7
Changing the Endpoint URL 8
Enabling Secure Transmission over HTTPS 9
Changing the Timeout Length for SOAP Requests 10
Logging Outgoing and Incoming Message Traffic 11
CertificateUtility.java 12

Overview

The Interplay WS API provides SOAP web services for interacting with Avid Interplay. The first release
provides operations for exchanging and modifying metadata in the Avid Interplay Engine. This
document demonstrates how to create a Java client for Interplay WS using the NetBeans 5.5 and Sun’s
Metro JAX-WS implementation.

The Interplay WS distribution also comes with a screencast demonstrating how to use NetBeans with
Interplay WS. You may want to watch the screencast for a more visual and dynamic demonstration.

Sun Metro and Java SOAP Toolkits

Sun’s Metro project was chosen for this tutorial due to its ease of use (via NetBeans integration) and
excellent interoperability. There are also many other Java SOAP toolkits available, including: Axis,
Axis2, CXF, JBossWS, and XFire.

General Conventions Used in this Document

Server name and port
The server name and port of the Interplay WS services will be different for each site. For the purposes
of this documentation, we will be using the localhost server and port 80 (the default port). You should
modify your work to reflect the actual hostname and port of your Interplay WS installation.

For simplicity, this documentation will mainly use http. Instructions for using https can be found near
the end of this document. For security purposes, we recommend you use https in production
environments.

Workgroup name and server mapping
The Interplay WS application must be configured with workgroup name and server mappings. This can
be done via the Avid Interplay Framework Configuration client. For the purposes of this documentation,
we will assume that the workgroup name WGA is mapped to our Interplay Engine server.

Locating the WSDL and XSD files

Since Interplay WS is a SOAP web service, it uses a Web Services Description Language (WSDL) file
to describe its interface. This WSDL also references an XML Schema Document (XSD) to define the
XML types used in the messages. In development, your SOAP toolkit will use the WSDL file to
generate client code to access the service.

The WSDL for Interplay WS Assets can be found at:
http://iws-srv/services/Assets?wsdl
(Remember to change the server name and port to match your environment)

This WSDL will also reference the XSD, which can be found at:
http://iws-srv/services/Assets?xsd=assets.xsd

Using Netbeans 5.5 and Sun Metro with Avid Interplay WS 2

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Web_service
http://www.netbeans.org/
https://metro.dev.java.net/
https://metro.dev.java.net/
http://ws.apache.org/axis/
http://ws.apache.org/axis2/
http://incubator.apache.org/cxf/
http://labs.jboss.com/jbossws/
http://xfire.codehaus.org/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/xmlschema-0/
http://iws-srv/services/Assets?wsdl
http://iws-srv/services/Assets?wsdl

Creating a Metro Client with NetBeans Step-by-Step

For this tutorial, we will create a simple Java Console application that gets the children of the
Projects/Rainforest folder.

Create a New Java Application Project

1. Create a new project by choosing File -> New Project…

2. Choose General and Java Application, and then enter the name, location, and package of the

project.

Using Netbeans 5.5 and Sun Metro with Avid Interplay WS 3

Create a New Web Service Client for the Interplay WS Assets Service

1. Right-click in the Projects pane and choose New -> Web Service Client…

2. Type in the URL to the WSDL file (see Locating the WSDL and XSD File above). Then choose the

package, make sure that JAX-WS is selected, and click Finish.

Using Netbeans 5.5 and Sun Metro with Avid Interplay WS 4

Generating Starting Point Code for Calling an Operation

NetBeans has a wizard for generating starting point code to call an operation. Although implementation
is easy enough without the wizard, we’ll show you how to use it. If you want to just write the code from
scratch, skip to the next section.

1. Right-click in the main method and choose Web Service Client Resources -> Call Web Service

Operation.

2. Choose the GetChildren operation and then click OK.

3. Now fill in the remaining code where the comments are marked TODO. You may also want to

make the code look cleaner by changing fully qualified names to use import statements instead.

4. For more details on filling in the rest of the code, please refer to the next section: Write Code to Use

the Interplay WS Assets Service.

Using Netbeans 5.5 and Sun Metro with Avid Interplay WS 5

Write Code to Use the Interplay WS Assets Service

1. Get an implementation of the Assets port. For this example, we are writing this and all other code

in the main method of our program.

Assets service = new Assets();
AssetsPortType port = service.getAssetsPort();

2. Create and populate the parameters for the GetChildren operation. See the Interplay WS

Reference Guide for more information on Interplay URIs.

3. Set the UserCredentials to pass in the operation.

4. Execute the GetChildren operation via the Assets port.

UserCredentialsType creds = new UserCredentialsType();
creds.setUsername("jsmith");
creds.setPassword("secret");

GetChildrenResponseType result = port.getChildren(body, creds);

GetChildrenType body = new GetChildrenType();
body.setInterplayURI("interplay://WGA/Projects/Rainforest");
body.setIncludeFiles(true); // booleans default to false if not specified
body.setIncludeFolders(true);
body.setIncludeMOBs(true);

5. Handle the results. For this example, we’ll just output the Interplay URI and the returned attributes.

See the Interplay WS Reference Guide for more info on attributes.

for (AssetDescriptionType asset : result.getResults().getAssetDescription()) {
 System.out.println(asset.getInterplayURI());
 for (AttributeType att : asset.getAttributes().getAttribute()) {
 System.out.println(att.getGroup() + "." + att.getName() + " = " +
 att.getValue());
 }
 System.out.println();
}

6. Save and run the program. You should see the results in the Output pane at the bottom of the

NetBeans window.

Using Netbeans 5.5 and Sun Metro with Avid Interplay WS 6

Advanced Topics

Enabling MTOM Support

MTOM is the recommended best practice for efficiently transporting binary files via SOAP. Enabling
MTOM in Metro is very easy.

1. Add the import statement for MTOMFeature at the top of your Java class.

import javax.xml.ws.soap.MTOMFeature;

2. In your custom code, you must now pass in the MTOMFeature when getting the Assets port.

AssetsPortType port = service.getAssetsPort(new MTOMFeature());

Using Netbeans 5.5 and Sun Metro with Avid Interplay WS 7

https://jax-ws.dev.java.net/nonav/2.1.1/docs/api/javax/xml/ws/soap/MTOMFeature.html

Changing the Endpoint URL

In some cases, you may want to change the endpoint that your client code uses. By default, the code
will use whichever endpoint URL was specified in the WSDL to create the service. To make your client
communicate with an Interplay WS service on a different host, you need to change the endpoint URL.

Unfortunately, Metro does not provide a simple way to change the endpoint URL. It is possible, but the
statement is a bit more complicated than it seems it should be.

((javax.xml.ws.BindingProvider)port).getRequestContext().put(
 javax.xml.ws.BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://iws-srv2/services/Assets");

Another common reason to change the endpoint is for debugging purposes. You can use a tool such
as TCPMon to create a relay to the Interplay WS host. You would then configure your client code to
send requests to TCPMon on your local machine. TCPMon could then intercept the sent and received
messages so you can view their contents. If TCPMon is listening on port 81 on your local machine,
your code should look like this:

((javax.xml.ws.BindingProvider)port).getRequestContext().put(
 javax.xml.ws.BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://localhost:81/services/Assets");

Using Netbeans 5.5 and Sun Metro with Avid Interplay WS 8

http://ws.apache.org/commons/tcpmon/

 Enabling Secure Transmission over HTTPS

The Interplay WS service also allows for encrypted transmissions via HTTPS. The Interplay WS server
uses a self-signed certificate, so Java will not trust it by default. There are two ways to get Java to trust
the Interplay WS service.

Importing the Interplay WS Certificate into your KeyStore

The recommended approach is to use Java’s keytool to import the Interplay WS server’s certificate into
your keystore. This is the more complicated of the two approaches, but is considered more secure.
For your convenience, there is an example Java utility at the end of this documentation that shows how
to download the certificate or programmatically add it to the client keystore.

Configuring Java SSL to Trust Self-Signed Certificates

You can also configure Java to override the default TrustManager. This is a system wide setting, so it
may affect the security of other applications running within the JVM.

1. Create a custom TrustManager that trusts the self-signed certificate.

2. Configure the SSLContext and HttpsUrlConnection classes.

3. Change your Assets port to use HTTPS instead of HTTP.

 port.Url = "https://iws-srv/services/Assets";

try{
 SSLContext sc = SSLContext.getInstance("SSL");
 sc.init(null, interplayWsTrustingManager, new java.security.SecureRandom());
 HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());
} catch (Exception e) {
 e.printStackTrace();
}

javax.net.ssl.TrustManager[] interplayWsTrustingManager = new javax.net.ssl.TrustManager[]{
 new javax.net.ssl.X509TrustManager() {
 public java.security.cert.X509Certificate[] getAcceptedIssuers() { return null; }
 public void checkClientTrusted(java.security.cert.X509Certificate[] certs, String authType) { }
 public void checkServerTrusted(java.security.cert.X509Certificate[] certs, String authType)
 throws java.security.cert.CertificateException {
 // Do certificate validation logic here.
 // This example trusts any certs that have an Organization Unit of "Interplay"
 for (java.security.cert.X509Certificate cert : certs) {
 if (cert.getSubjectX500Principal().getName().contains("OU=Interplay")) return;
 }
 // No certs passed the test, so throw a CertificateException to indicate NO TRUST
 throw new java.security.cert.CertificateException();
 }
 }
};

Using Netbeans 5.5 and Sun Metro with Avid Interplay WS 9

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/net/ssl/TrustManager.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/net/ssl/SSLContext.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/net/ssl/HttpsURLConnection.html

Changing the Timeout Length for SOAP Requests

Some queries (particularly broad search queries) may take some time before they return with a
response. You can configure your client to timeout after a certain length of time by adding a value to
the request context. Timeout values are measured in milliseconds.

((BindingProvider)port).getRequestContext().put("com.sun.xml.ws.request.timeout", 5*60*1000);

This essentially calls setReadTimeout(int …) on the java.net.URLConnection class. If a timeout does
occur in your client, a java.net.SocketTimeoutException will be thrown.

If you do not wish for timeouts to occur, you can disable timeouts by setting the timeout value to 0:

 ((BindingProvider)port).getRequestContext().put("com.sun.xml.ws.request.timeout", 0);

Using Netbeans 5.5 and Sun Metro with Avid Interplay WS 10

https://jax-ws.dev.java.net/guide/HTTP_Timeouts.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLConnection.html#setReadTimeout(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLConnection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/SocketTimeoutException.html

Logging Outgoing and Incoming Message Traffic

Sometimes it is helpful to see the SOAP XML messages for debugging purposes. This can be done
quite easy using Sun Metro. Once configured, the incoming and outgoing messages will be logged to
standard out.

To log messages using Sun Metro:

1. Set the HttpTransportPipe to dump its messages:

com.sun.xml.ws.transport.http.client.HttpTransportPipe.dump=true;

Using Netbeans 5.5 and Sun Metro with Avid Interplay WS 11

CertificateUtility.java

The following is an example Java utility for extracting a certificate from an HTTPS server and
downloading it to a file or importing it to a keystore. This code is provided as an example only and is
not intended for production use. We have included it since it may be helpful in your development.

/*
 * This is an example of how to programmatically get an X509 certificate from a running
 * HTTPS server and download it as a file or import it into a keystore. This example comes
 * with no warranty expressed or implied.
 *
 * To use its interactive commandline, compile and run this class. Please review the code
 * to fully understand how it works.
 */
import javax.net.ssl.SSLContext;
import javax.net.ssl.SSLSocket;
import javax.net.ssl.SSLSocketFactory;
import javax.net.ssl.TrustManager;
import javax.net.ssl.X509TrustManager;
import java.io.BufferedReader;
import java.io.ByteArrayInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.security.KeyStore;
import java.security.KeyStoreException;
import java.security.NoSuchAlgorithmException;
import java.security.cert.Certificate;
import java.security.cert.CertificateEncodingException;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import java.util.Arrays;
import java.util.Enumeration;

public class CertificateUtility {
 BufferedReader in;

 public CertificateUtility() {
 in = new BufferedReader(new InputStreamReader(System.in));
 }

 Certificate[] getServerCertificates(String host, int port) {

 Certificate[] certs = new Certificate[0];

 // Create a trust manager that does not validate certificate chains
 TrustManager[] allTrustingTrustManagers = new TrustManager[]{
 new X509TrustManager() {
 public java.security.cert.X509Certificate[] getAcceptedIssuers() { return null; }
 public void checkClientTrusted(X509Certificate[] certs, String authType) { }
 public void checkServerTrusted(X509Certificate[] certs, String authType) { }
 }
 };

 SSLSocket socket = null;
 try {
 // Get an all trusting socket factory
 SSLContext sslContext = SSLContext.getInstance("SSL");
 sslContext.init(null, allTrustingTrustManagers, null);
 SSLSocketFactory factory = sslContext.getSocketFactory();
 socket = (SSLSocket)factory.createSocket(host, port);

 // Connect to the server and get the certificate chain
 socket.startHandshake();
 certs = socket.getSession().getPeerCertificates();
 } catch (Exception e) {
 System.out.println("There was an error connecting to the host. Reason: " + e.getMessage());
 } finally {

Using Netbeans 5.5 and Sun Metro with Avid Interplay WS 12

 // Close the socket
 try { if (socket != null) socket.close(); } catch (IOException e) { }
 }

 return certs;
 }

 KeyStore getKeyStore(File ksFile, String ksPassword)
 throws KeyStoreException, NoSuchAlgorithmException, IOException, CertificateException {

 KeyStore ks = KeyStore.getInstance(KeyStore.getDefaultType());
 FileInputStream fis = null;
 try {
 fis = ksFile.exists() ? new FileInputStream(ksFile) : null;
 ks.load(fis, ksPassword.toCharArray());
 } catch (FileNotFoundException e) {
 // This should never happen since we check if it exists first
 } finally {
 try { if (fis != null) { fis.close(); } } catch (IOException e) {}
 }

 return ks;
 }

 private void importCertInKeyStore(Certificate cert, KeyStore ks, String alias)
 throws KeyStoreException {
 ks.setCertificateEntry(alias, cert);
 }

 private void saveKeyStore(KeyStore ks, File ksFile, String password)
 throws NoSuchAlgorithmException, IOException, CertificateException, KeyStoreException {
 FileOutputStream fos = new FileOutputStream(ksFile);
 ks.store(fos, password.toCharArray());
 }

 public void interactiveSession() throws IOException {
 String host = promptForInput("Hostname: ");
 int port = Integer.valueOf(promptForInput("Port: "));

 Certificate[] certs = getServerCertificates(host, port);
 if (certs.length == 0) {
 System.out.println("No server certificates were found for " + host + " on port " + port);
 return;
 }

 String option =
 promptForInput("Would you like to [d]ownload or [i]nstall the certificate?").trim();
 if ("i".equalsIgnoreCase(option)) {
 interactiveImport(host, certs);
 } else {
 interactiveDownload(certs);
 }
 }

 public void interactiveDownload(Certificate[] certs) throws IOException {
 try {
 for (Certificate cert: certs) {
 if (cert instanceof X509Certificate) {
 byte[] encoded = cert.getEncoded();
 ByteArrayInputStream bais = new ByteArrayInputStream(encoded);
 String name = "cert" + System.currentTimeMillis() + ".cer";
 FileOutputStream fos = new FileOutputStream(name);
 byte[] buf = new byte[1024];
 int i;
 while((i=bais.read(buf))!=-1) {
 fos.write(buf, 0, i);
 }
 bais.close();
 fos.close();
 printCertificateDetails((X509Certificate) cert);
 System.out.println("Successfully saved certificate to " + name);
 return;
 }
 }
 } catch (CertificateEncodingException e) { }

Using Netbeans 5.5 and Sun Metro with Avid Interplay WS 13

 // Must have been a problem
 System.out.println("There was an error downloading the certificate.");
 }

 public void interactiveImport(String host, Certificate[] certs) throws IOException {
 KeyStore ks = null;
 File ksFile = null;
 String ksPassword = null;
 while (ks == null) {
 while (ksFile == null) {
 String type = promptForInput("Import to [j]ssecacerts or [c]ustom truststore? ").trim();
 if ("j".equalsIgnoreCase(type)) {
 File cacerts = new File(System.getProperty("java.home") +
 "/jre/lib/security/cacerts");
 if (! cacerts.exists()) {
 cacerts = new File(System.getProperty("java.home") + "/lib/security/cacerts");
 }
 if (cacerts.exists()) {
 File jssecacerts = new File(cacerts.getAbsolutePath().replace("cacerts",
 "jssecacerts"));
 if (! jssecacerts.exists()) {
 // Copy cacerts to jssecacerts
 System.out.println("Copying " + cacerts.getAbsolutePath() +
 " to jssecacerts...");
 FileInputStream fis = new FileInputStream(cacerts);
 FileOutputStream fos = new FileOutputStream(jssecacerts);
 byte[] buf = new byte[1024];
 int i;
 while((i=fis.read(buf))!=-1) {
 fos.write(buf, 0, i);
 }
 fis.close();
 fos.close();
 }
 ksFile = jssecacerts;
 }
 }
 if (ksFile == null) {
 String ksPath =
 promptForInput("Path to keystore file [<enter> for ~/.keystore]: ").trim();
 if (ksPath.length() == 0) {
 ksPath = System.getProperty("user.home") + "/.keystore";
 }
 ksFile = new File(ksPath);
 if (! ksFile.exists()) {
 if (! promptForBoolean("Keystore file does not exist. Create file? ")) {
 ksFile = null;
 }
 }
 }
 }

 ksPassword = promptForInput("Keystore Password: ");

 try {
 ks = getKeyStore(ksFile, ksPassword);
 Enumeration<String> aliases = ks.aliases();
 if (aliases.hasMoreElements()) {
 System.out.println("The keystore contains the following aliases: ");
 }
 while (aliases.hasMoreElements()) {
 System.out.println(aliases.nextElement());
 }
 } catch (Exception e) {
 System.out.println("There was an error loading your keystore. Reason: " +
 e.getMessage());
 return;
 }

 }

 boolean changes = false;
 for (Certificate cert: certs) {
 if (cert instanceof X509Certificate) {

Using Netbeans 5.5 and Sun Metro with Avid Interplay WS 14

Using Netbeans 5.5 and Sun Metro with Avid Interplay WS 15

 X509Certificate x509 = (X509Certificate) cert;
 printCertificateDetails(x509);
 boolean importCert = promptForBoolean("Import this certificate? ");
 if (importCert) {
 String alias =
 promptForInput("Choose an alias [<enter> for " + host + "]: ").trim();
 if (alias.length() == 0) {
 alias = host;
 }

 try {
 importCertInKeyStore(cert, ks, alias);
 changes = true;
 } catch (KeyStoreException e) {
 System.out.println("There was an error importing this certificate. Reason: " +
 e.getMessage());
 }
 }
 }
 }

 if (changes) {
 System.out.println("Now saving the keystore back to file...");
 try {
 saveKeyStore(ks, ksFile, ksPassword);
 } catch (Exception e) {
 System.out.println("Couldn't save the keystore back to disk. " +
 "All changes will be lost. Reason: " + e.getMessage());
 }
 } else {
 System.out.println("No changes were made to the keystore.");
 }
 }

 private void printCertificateDetails(X509Certificate x509) {
 System.out.println();
 System.out.println("A certificate was found on the server with the following information:");
 System.out.println("============");
 System.out.println("Owner: " + x509.getSubjectX500Principal());
 System.out.println("Issuer: " + x509.getIssuerX500Principal());
 System.out.println("Serial #: " + x509.getSerialNumber());
 System.out.println("Valid from: " + x509.getNotBefore() + " until: " + x509.getNotAfter());
 System.out.println("============");
 System.out.println();
 }

 String promptForInput(String prompt) throws IOException {
 System.out.print(prompt);
 return in.readLine();
 }

 boolean promptForBoolean(String prompt) throws IOException {
 while (true) {
 String val = promptForInput(prompt).toLowerCase().trim();
 String[] trues = new String[] {"true", "t", "yes", "y", "ok"};
 String[] falses = new String[] {"false", "f", "no", "n"};
 if (Arrays.asList(trues).contains(val)) {
 return true;
 } else if (Arrays.asList(falses).contains(val)) {
 return false;
 }
 }
 }

 public static void main(String[] args) throws IOException {
 CertificateUtility cu = new CertificateUtility();
 cu.interactiveSession();
 }
}

	Overview
	Sun Metro and Java SOAP Toolkits
	General Conventions Used in this Document
	Locating the WSDL and XSD files

	Creating a Metro Client with NetBeans Step-by-Step
	Create a New Java Application Project
	Create a New Web Service Client for the Interplay WS Assets Service
	Generating Starting Point Code for Calling an Operation
	Write Code to Use the Interplay WS Assets Service

	Advanced Topics
	Enabling MTOM Support
	Changing the Endpoint URL
	 Enabling Secure Transmission over HTTPS
	Changing the Timeout Length for SOAP Requests
	Logging Outgoing and Incoming Message Traffic
	CertificateUtility.java

